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Figure 15.  The Sun rotates much faster at the equator than at the poles. However, MDI has
shown that there are belts where there are differential flows. In particular, there is a “vortex,”
shown here in deep blue, situated over each pole (Schou et al, 1998).

I. What we know of the coronal context as a consequence of SOHO and other remote
observations:
A. There is unresolved filamentary flow in coronal holes.
B. Streamers extend well beyond 4 RS with subsonic flow at the tops.
C. Coronal hole boundaries are extremely sharp.
D. The polar regions of the Sun have different rotational and magnetic field properties

than at the equator.

II. What remains to be answered with SP:
A. Absolute value and variability of flow at streamer tops.
B. The minimum scale of coronal hole filamentary structure.
C. The relationship between coronal hole boundaries and the magnetic field.
D. The relationship between solar rotation and polar magnetic field and coronal holes.

1.6    Synopsis

SP will address the many, sometimes contradicting, ideas for the source of the solar wind and,
by extrapolation, stellar winds. These include, but are not limited to: extended heating versus
basal heating, waves versus pulsed solar wind versus jets versus particle beams, mixing of the
fast solar wind with embedded filamentary structures, temperatures and temperature
anisotropy’s of heavy elements, and wave and plasma wave roles. SP will be able to resolve
and distinguish between the applicability of these ideas, which have arisen as a result of
NASA, ESA, and ISAS missions and a long history of ground based observations of the Sun.
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1.6.1 How Solar Probe Will Answer the Primary (Group 1) Science Questions

• Determine the acceleration processes and find the source regions of fast and slow solar
wind at maximum and minimum solar activity

By using two passes through the corona, at maximum and minimum solar activity, at the
height of streamer tops and heating and momentum deposition in coronal holes, SP will be able
to analyze the physics of acceleration in the slow and fast wind source regions by making the
proper measurements. Measurements are needed of the magnetic field and the electron and
proton vector velocity, density, and parallel and perpendicular temperature at sufficiently high
time resolution to resolve the finest expected scales (~100 km at the photosphere). Ion
composition is needed at least for He, O, Si, and Fe to compare with the observations from
Ulysses and SOHO. Plasma wave measurements will be necessary to resolve the wave modes,
directions of propagation, and forms of particle heating. Energetic particle measurements will
be needed to determine sources and trapping mechanisms. The suggested instruments and their
properties will meet these requirements.

• Locate the source and trace the flow of energy that heats the corona

Making the measurements from 4 RS out to at least 30 RS is required to understand the
relationship and large differences known to exist between coronal and solar wind properties.
Heating is a function of height and ambient properties, which can only be resolved physically
with a knowledge of radial evolution.

• Construct the three-dimensional coronal density configuration from pole to pole, and
determine the subsurface flow pattern, the structure of the polar magnetic field and its
relationship with the overlying corona.

Imaging of the surrounding corona as SP passes from pole-to-pole, in combination with in situ
measurements of the bulk plasma, will produce context images of the corona and the first polar
view of the equatorial corona. If tomography is successful, an enormous improvement in
understanding streamer morphology will also be made. Photospheric imaging from a polar
perspective would confirm or reject the proposed polar solar rotation vortex and a (possibly
associated) polar peak in magnetic field strength.

• Identify the acceleration mechanisms and locate the source regions of energetic particles,
and determine the role of plasma waves and turbulence in the production of solar wind and
energetic particles.

Energetic particle measurements will be made in combination with vector magnetic field
measurements to define regions of local particle trapping and photospheric origin of particles.
High-time-resolution plasma measurements necessary for defining the limits of filamentation
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in coronal holes will also enable definition of the evolving field of MHD turbulence with
increasing heliocentric distance.

1.6.2 How Solar Probe Will Answer the Secondary (Group 2/3) Science Questions

The secondary science questions are:
• Investigate dust rings and particulates in the near-Sun environment

- Dust and particulates accumulate near the Sun by condensation out of coronal gasses and
infall from the interplanetary medium. An enhanced concentration is expected to exist outside
4 Rs, and SP is the only proposed mission capable of demonstrating its existence.
• Determine the outflow of atoms from the Sun and their relationship to the solar wind

- The composition of coronal plasma is part of the prime objectives. The same instrument
measuring composition could also measure outflow, which is naturally a valuable addition to
the body of information used to analyze acceleration and heating.

• Establish the relationship between remote sensing, near-Earth observations at 1 AU and
plasma structures near the Sun

- Remote sensing observations from 1 AU are unable to resolve the fine structure in coronal
holes and are limited by line-of-sight effects in streamers. There is, nevertheless, a large body
of data taken over the past decades that may contain unexpected useful information given the
context that in situ SP imaging may provide.

• Determine the role of X-ray microflares in the dynamics of the corona

- X-ray microflares occur in the chromospheric network as magnetic bipoles are advected into
the network from supergranule interiors. They may be the source of some coronal jets. The
photospheric imaging experiment may help to resolve whether this is the case.

• Probe nuclear processes near the solar surface from measurements of solar gamma rays and
slow neutrons.

- The addition of a gamma-ray and slow neutron detector would enable the determination of
sources in the photosphere that are associated with microflares and other small scale
photospheric activity.
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